Towards a Novel Class of Multitarget-Directed Ligands: Dual P2X7-NMDA Receptor Antagonists.

نویسندگان

  • Olga Karoutzou
  • Seung-Hwa Kwak
  • So-Deok Lee
  • Daina Martínez-Falguera
  • Francesc X Sureda
  • Santiago Vázquez
  • Yong-Chul Kim
  • Marta Barniol-Xicota
چکیده

Multi-target-directed ligands (MTDLs) offer new hope for the treatment of multifactorial complex diseases such as Alzheimer's Disease (AD). Herein, we present compounds aimed at targeting the NMDA and the P2X7 receptors, which embody a different approach to AD therapy. On one hand, we are seeking to delay neurodegeneration targeting the glutamatergic NMDA receptors; on the other hand, we also aim to reduce neuroinflammation, targeting P2X7 receptors. Although the NMDA receptor is a widely recognized therapeutic target in treating AD, the P2X7 receptor remains largely unexplored for this purpose; therefore, the dual inhibitor presented herein-which is open to further optimization-represents the first member of a new class of MTDLs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QSAR studies and application of genetic algorithm - multiple linear regressions in prediction of novel p2x7 receptor antagonists’ activity

Quantitative structure-activity relationship (QSAR) models were employed for prediction the activity of P2X7 receptor antagonists. A data set consisted of 50 purine derivatives was utilized in the model construction where 40 and 10 of these compounds were in the training and test sets respectively. A suitable group of calculated molecular descriptors was selected by employing stepwise multiple ...

متن کامل

NMDA RECEPTOR ANTAGONISTS ATTENUATE TOLERANCE INDUCED BY MORPHINE AND NERVE LIGATION IN MICE

The effect of NMDA (N-methyl-D-aspartate) receptor antagonists on tolerance to morphine antinociception was investigated in mice. Daily subcutaneous administration of 50 mg/kg of morphine hydrochloride for three days induced tolerance to different (3,6 and 9 mg/kg) test doses of morphine. The tolerance obtained was decreased by pretreatment of animals with single or repeated doses of compe...

متن کامل

Multitarget Drug Design, Molecular Docking and PLIF Studies of Novel Tacrine−Coumarin Hybrids for the Treatment of Alzheimer’s Disease

Alzheimer’s disease (AD) as a complicated and progressive neurodegenerative disorder is the most common form of dementia and memory loss. On account of the multifactorial etiology of AD, the multi-target-directed ligand (MTDL) approach is a promising method in searching new drug candidates for this disease. Here, in this paper more than 500 tacrine-coumarin hybrids have been designed and drug-l...

متن کامل

Multitarget Drug Design, Molecular Docking and PLIF Studies of Novel Tacrine−Coumarin Hybrids for the Treatment of Alzheimer’s Disease

Alzheimer’s disease (AD) as a complicated and progressive neurodegenerative disorder is the most common form of dementia and memory loss. On account of the multifactorial etiology of AD, the multi-target-directed ligand (MTDL) approach is a promising method in searching new drug candidates for this disease. Here, in this paper more than 500 tacrine-coumarin hybrids have been designed and drug-l...

متن کامل

Navigating the Chemical Space of Multitarget-Directed Ligands: From Hybrids to Fragments in Alzheimer's Disease.

Multitarget drug discovery is one of the hottest topics and most active fields in the search for new molecules against Alzheimer's disease (AD). Over the last 20 years, many promising multitarget-directed ligands (MTDLs) have been identified and developed at a pre-clinical level. However, how to design them in a rational way remains the most fundamental challenge of medicinal chemists. This is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 23 1  شماره 

صفحات  -

تاریخ انتشار 2018